numerical solution of delay integral equations by using block pulse functions arises in biological sciences

نویسندگان

m. nouri

department of mathematics, south tehran branch, islamic azad university, tehran, iran k. maleknejad

department of mathematics, iran university of science and technology, narmak, tehran, iran

چکیده

this article proposes a direct method for solving three types of integral equations with time delay. by using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. numerical examples shows that the proposed scheme have a suitable degree of accuracy.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NUMERICAL SOLUTION OF DELAY INTEGRAL EQUATIONS BY USING BLOCK PULSE FUNCTIONS ARISES IN BIOLOGICAL SCIENCES

This article proposes a direct method for solving three types of integral equations with time delay. By using operational matrix of integration, integral equations can be reduced to a linear lower triangular system which can be directly solved by forward substitution. Numerical examples shows that the proposed scheme have a suitable degree of accuracy.  

متن کامل

Numerical solution of nonlinear integral equations by Galerkin methods with hybrid Legendre and Block-Pulse functions

In this paper, we use a combination of Legendre and Block-Pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.The nonlinear part of the integral equation is approximated by Hybrid Legen-dre Block-Pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. We give some numerical examples. To showapplicability of...

متن کامل

Theory of block-pulse functions in numerical solution of Fredholm integral equations of the second ‎kind‎

Recently, the block-pulse functions (BPFs) are used in solving electromagnetic scattering problem, which are modeled as linear Fredholm integral equations (FIEs) of the second kind. But the theoretical aspect of this method has not fully investigated yet. In this article, in addition to presenting a new approach for solving FIE of the second kind, the theory of both methods is investigated as a...

متن کامل

Numerical solution of system of linear integral equations via improvement of block-pulse functions

In this article, a numerical method based on  improvement of block-pulse functions (IBPFs) is discussed for solving the system of linear Volterra and Fredholm integral equations. By using IBPFs and their operational matrix of integration, such systems can be reduced to a linear system of algebraic equations. An efficient error estimation and associated theorems for the proposed method are also ...

متن کامل

Numerical solution of Hammerstein Fredholm and Volterra integral equations of the second kind using block pulse functions and collocation method

In this work, we present a numerical method for solving nonlinear Fredholmand Volterra integral equations of the second kind which is based on the useof Block Pulse functions(BPfs) and collocation method. Numerical examplesshow eciency of the method.

متن کامل

numerical solution of nonlinear integral equations by galerkin methods with hybrid legendre and block-pulse functions

in this paper, we use a combination of legendre and block-pulse functionson the interval [0; 1] to solve the nonlinear integral equation of the second kind.the nonlinear part of the integral equation is approximated by hybrid legen-dre block-pulse functions, and the nonlinear integral equation is reduced to asystem of nonlinear equations. we give some numerical examples. to showapplicability of...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
international journal of mathematical modelling and computations

جلد ۶، شماره ۳، صفحات ۲۲۱-۲۳۱

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023